Pages 102-108

PRIMARY STRUCTURE OF THREE LEUCINE TRANSFER RNAS FROM BEAN CHLOROPLAST M.L. OSORIO-ALMEIDA, P. GUILLEMAUT, G. KEITH, J. CANADAY and J.H. WEIL

Institut de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, 15 rue Descartes, 67084 Strasbourg, France

Received November 6,1979

SUMMARY

Three tRNAs Leu have been purified from bean chloroplasts and their nucleotide sequence determined. tRNALeu has 88 nucleotides and a U*AA anticodon, tRNALeu has 85 nucleotides and a CMAA anticodon, and tRNALeu has 83 nucleotides and a UAm 7G anticodon.

INTRODUCTION

Chloroplasts contain their own DNA and have their own systems for replication, transcription and translation. As far as the translation machinery is concerned, chloroplasts contain tRNAs and aminoacyl-tRNA synthetases which are different from their cytoplasmic counterparts (1, 2). In *Phaseolus vulgaris* chloroplasts, three tRNAs Leu have been found by reverse-phase chromatography (3) and by two-dimensional gel electrophoresis (4). In our laboratory, ribosome binding studies using the six leucine codewords showed that these three tRNAs preferentially recognize the U-U-G codon (5). To see whether these three isoaccepting tRNAs Leu differ in their primary structures or only in post-transcriptional modification and to determine the anticodons, the nucleotide sequences were determined. It should be pointed out that only two sequences of chloroplast tRNAs have been published so far, namely Euglena chloroplast tRNA Phe (6) and bean chloroplast tRNA Phe (7) which differ by only five nucleotides, in addition to small differences in the post-transcriptional modifications.

MATERIAL AND METHODS

Bean leaf total tRNA was prepared as previously described (8). The three chloroplast tRNAs^{Leu} were first fractionated into three peaks on Sepharose 4B (Fig. 1). Then tRNA^{Leu} (peak 1) and tRNA^{Leu} (peak 3) were further purified using two reverse-phase chromatography (RPC-5) columns(10) : the first column run at room temperature and at pH 7.4 (NaCl gradient from 0.45 to 0.8 M), the second column run at 37° and pH 4.6, using the same NaCl gradient. Because of its extreme lability on RPC-5 columns, tRNA^{Leu} was purified by two-dimensional polyacrylamide gel electrophoresis (4).

To determine the primary structures of these three $\mathsf{tRNAs}^{\mathrm{Leu}}$, the following procedures were used :

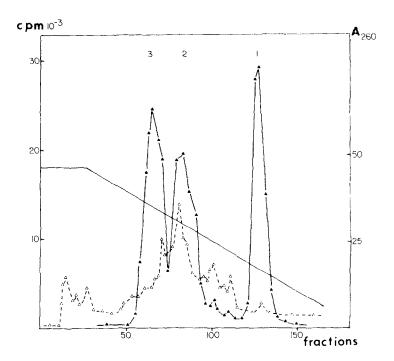


Fig. 1. Fractionation of bean leaf total tRNA on Sepharose 4B. 200 mg tRNA were loaded on the column (40 x 2 cm). Elution was performed with a 2 x 1000 ml decreasing gradient of SO4(NH4)2 from 1.9 M to 0 M in sodium acetate buffer 0.01 M pH 4.5, MgCl2 0.01 M, EDTA 0.001 M, β -mercaptoethanol 0.006 M (9). Fractions of 10 ml were collected. (\triangle - \triangle) A260 nm; (\blacktriangle - \blacktriangle) $\left| \text{3H} \right|$ leucine accepting activity revealed using a crude E.coli aminoacyl-tRNA synthetase preparation (3).

1) Characterization of modified nucleosides or nucleotides.

The nucleoside composition of tRNA $_1^{\rm Leu}$ and tRNA $_3^{\rm Leu}$ was determined according to Rogg et al. (11) whereas the nucleotide composition of tRNA $_2^{\rm Leu}$ was determined according to Brown et al. (12).

2) Sequencing methods.

- a) Most of the sequences were read off from sequencing gels done according to Donis-Keller et al. (13) and Simonosits et al. (14) using $3' \begin{vmatrix} 3^2p \end{vmatrix}$ labeled tRNAs^{Leu} (15) or $5' \begin{vmatrix} 3^2p \end{vmatrix}$ labeled fragments (7) obtained after partial T₁ RNAase hydrolysis of tRNAs^{Leu}.
- c) The position of the modified nucleotides in each tRNA^{Leu} could be determined (19) by 5 $|^{32}P|$ labeling of the partial hydrolysis products of each tRNA, separation of the labeled fragments according to their size on a 20% polyacrylamide slab gel followed by extraction of each fragment from the gel and analysis of the 5 $|^{32}P|$ terminal mononucleotide by thin layer chromatography.

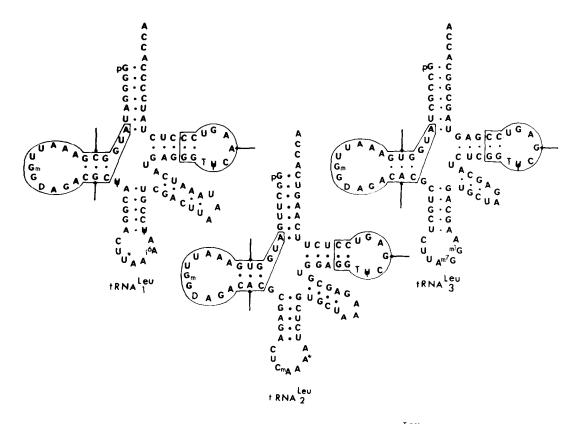


Fig. 2. Cloverleaf models of the three chloroplast tRNAs Leu Nucleotide sequences showing a large extent of homology are in boxes (arrows designate differences, within these sequences, between the three tRNAsLeu).

RESULTS

The primary structures of the three chloroplast $tRNAs^{Leu}$ are shown in cloverleaf form on figure 2. The anticodon regions of these three $tRNAs^{Leu}$ deserve special attention.

a) trnaLeu

U* is an unknown uridylic acid derivative, resistant to pancreatic RNAase and to alkali. It could therefore correspond to a 2'-O-methyl derivative. Figure 3 shows the position of this $5'|^{32}P|$ nucleotide (black spot) after analysis as described in "Material and Methods" (2c). The position of pu* on this chromatograph does not correspond to any known nucleotide. The modified A on the 3' side of the anticodon is either isopentenyl adenine (i⁶A) or zeatin (io⁶A).

b) tRNA Leu

After analysis as described in "Material and Methods" (2c), the first nucleotide of the anticodon has a position upon thin layer chromatography (Fig. 3) which corresponds to a 2'-O-methyl cytidine-5'-monophosphate (pCm). Adjacent

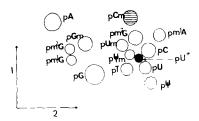


Fig. 3. Composite drawing of the two-dimensional chromatographs of $5'|^{32}P|$ nucleotides present at the 5' end of the anticodon of tRNALeu (black spot) and tRNALeu (hatched spot). After partial hydrolysis of tRNALeu or tRNALeu, the oligonucleotides were labeled at their 5' end with $|^{32}P|$, fractionated by electrophoresis on 20% polyacrylamide gel, extracted from the gel and hydrolyzed by P1 nuclease. The unlabeled nucleoside 5'-monophosphate markers were obtained after P1 nuclease digestion, followed by snake venom phosphodiesterase digestion, of mammalian tRNAPhe and tRNATPP (20, 21). Solvent 1 was isobutyric acid - 25% ammonium - H2O (66:1:33) and solvent 2 was 0.1 M sodium phosphate pH 6.8 : (NH3) 2SO4 : n-propanol 100:60 g : 2.

to the 3' side of the anticodon, there is a modified A which probably corresponds to i^6A or ms^2i^6A (or their hydroxyl-derivatives : zeatin or ms^2 zeatin).

c) tRNA Leu

The anticodon of $tRNA_3^{Leu}$ is U-A-m⁷G, followed on the 3' side by m^1 G. The nature of these minor nucleotides and their position in the $tRNA_q^{\text{Leu}}$ have been determined as follows : (i) the nucleotide analysis (12) of the T, oligonucleotide containing the anticodon showed upon thin-layer chromatography (see legend of figure 3) two minor nucleotides: pm⁷G and pm¹G; (ii) the "wandering spot technique" (see Material and Methods, 2b) applied to the above-mentioned 5' $|^{32}$ P|T $_1$ oligonucleotide gave the following sequence : $|^{32}$ P|C-U-C-U-U-A-m 7 G- $^{\mathrm{n}^{\mathrm{l}}}$ G-A-A-G (Fig. 4) ; (iii) the position of the above-mentioned T_{1} oligonucleotide in tRNA was confirmed using the technique described in reference 19 and the results are shown on figure 5. Oligonucleotides, generated by partial hydrolysis of tRNA2 , were labeled at their 5' end and fractionated by 20% polyacrylamide gel electrophoresis. The arrows indicate the fragments which are between 43 and 53 nucleotides long. P, nuclease digestion of these fragments, liberating the $5'|^{32}P|$ nucleotide, has allowed the identification of the 5' terminal nucleotide of each fragment, as indicated on the figure. It thus became clear that these anticodon is m^7G which is followed, on the 3' side, by m^1G .

DISCUSSION

The bean chloroplast tRNAs differ from each other in their length ; $\text{tRNA}_{1}^{\text{Leu}} \text{ has 88 nucleotides, tRNA}_{2}^{\text{Leu}} \text{ 85 nucleotides and tRNA}_{3}^{\text{Leu}} \text{ 83 nucleotides.}$ These differences are due to variations in the length of the extra-loop (Fig. 2).

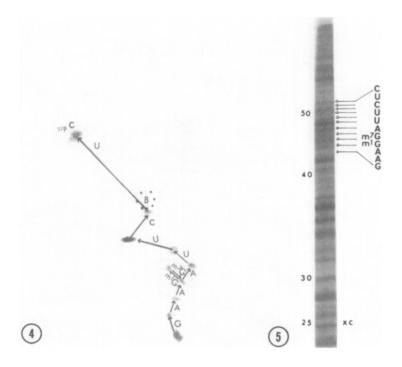


Fig. 4. Analysis by partial P1 nuclease digestion of the $5^{\circ}|32P|$ T1 oligonucleotide containing the anticodon of tRNALeu (see Material and Methods, 2b). Separation in the first dimension was achieved by electrophoresis on cellulose acetate at pH 3.5 and in the second dimension by homochromatography in 25 mM KOH-strenght homomix (17). Each radioactive spot corresponds to a $5^{\circ}|32P|$ oligonucleotide different from the preceding one by the loss of its 3' nucleotide which is indicated on the figure. Spot B shows the position of the xylene cyanol blue dye marker.

Fig. 5. Analysis of the anticodon region of $tRNA_{L}^{Leu}$. After partial hydrolysis (19) of $tRNA_{L}^{Leu}$, the oligonucleotides were labeled with $|3^2P|$ at their 5' end, separated on a 20% polyacrylamide gel according to their size, and visualized by autoradiography. Each oligonucleotide was then extracted from the gel, hydrolyzed by P_1 nuclease, and its $5^{\circ}|3^2P|$ nucleotide was identified by thin-layer chromatography. The xylene cyanol marker (XC) migrates with fragments about 25 nucleotides long.

In these three tRNAs Leu this loop is large (10, 12 and 15 nucleotides respectively), as in all tRNAs Leu sequenced so far (for a compilation see ref. 22). The three tRNAs Leu have quite different nucleotide sequences and as only two limited regions (see Fig. 2) of these three tRNAs show a high degree of homology, there must be (at least) three different tRNA Leu genes in bean chloroplast DNA.

The hU region of these three $tRNAs^{Leu}$ is almost identical and ressembles that of E.coli and phage T_4 $tRNAs^{Leu}$ (presence of a nucleotide at position 17 and lack of nucleotide at position 20:2), whereas it differs from that of yeast $tRNAs^{Leu}$ (see ref. 22), illustrating a similarity between chloroplast and procaryotic tRNAs already observed in the case of Euglena and bean chloroplast

trnAs ^{Phe} (6, 7). This structural analogy between trnAs ^{Leu} from E.coli and bean chloroplasts could account for the cross aminoacylation reactions observed between chloroplast trnAs ^{Leu} and E.coli leucyl-trnA synthetase and between E.coli trnAs ^{Leu} and chloroplast leucyl-trnA synthetase (3).

The anticodons are U*-A-A and Cm-A-A for chloroplast tRNA $_1^{\mathrm{Leu}}$ and tRNA $_2^{\mathrm{Leu}}$ respectively. The tRNA $_3^{\mathrm{Leu}}$ anticodon, U-A-m $_3^{\mathrm{T}}$ G, is rather unusual since it is the first case in which a m $_3^{\mathrm{T}}$ G is found in the third position of an anticodon. Furthermore, m $_3^{\mathrm{T}}$ G has so far been found only in the variable loop.

Of the six leucine codons, four can be recognized by these three chloroplast tRNAs Leu, according to the wobble hypothesis (24): U^{*} -A-A translates U-U-A and U-U-G; Cm-A-A translates U-U-G; U-A-m 7 G translates C-U-A and C-U-G. An additional tRNA Leu with a G-A-G anticodon would be necessary to translate C-U-U and C-U-C. Such a tRNA Leu has been found in E.coli K 12 (25) but has not been found in bean chloroplasts. Several hypotheses are possible: (i) a tRNA Leu exists in bean chloroplasts, but it is a minor species and has not yet been detected; (ii) the C-U-C and C-U-U codewords are not used in chloroplast mRNAs; (iii) U-A-m 7 G can translate C-U-C and C-U-U. This third possibility cannot be ruled out, since a yeast tRNA Leu has been found to be able to translate all six leucine codons including C-U-C and C-U-U (25).

Both tRNA₁^{Leu} and tRNA₂^{Leu} contain cytokinin derivatives, i⁶A or ms²i⁶A (or their hydroxyl derivatives zeatin and ms² zeatin) next to their anticodon. Chloroplast tRNAs he from Euglena (6) and Phaseolus vulgaris (7) also have ms²i⁶A at this position. These tRNAs and tRNAs he read codons beginning with U, which is in agreement with McCloskey and Nishimura (26) who suggest that tRNAs which recognize codons starting with U almost always contain hydrophobic modified nucleotides adjacent to the anticodon (on the 3' side). Cytokinin activity has previously been shown to be associated with tRNAs from peas (27) and wheat germ (28). Furthermore it was shown that of the six leucine isoaccepting tRNAs found in soybean cotyledons only two, which elute late on RPC-2 column, contain a cytokinin and recognize specifically codons beginning with U (29).

ACKNOWLEDGEMENTS

This work has been supported by grants from DGRST and INSERM. It has been partially carried out in the laboratory of Professor G. Dirheimer. We thank Dr. R. Giegé for a gift of terminal tRNA nucleotidyl transferase. The technical assistance of Ms C. Arnold and C. Fix is gratefully acknowledged.

REFERENCES

 Barnett, W.E., Schwartzbach, S.D. and Hecker, L.I. (1978) Progress in Nucleic Acid Research and Molecular Biology, Cohn, W.E. Ed., vol. 21, pp. 143. Academic Press, New York.

- Weil, J.H. (1979) in Nucleic Acids in Plants, Hall, T.C. and Davies, J. Eds CRC Press, West Palm Beach (in press).
- 3. Guillemaut, P., Steinmetz, A., Burkard, G. and Weil, J.H. (1975) Biochim. Biophys. Acta 378, 64-72.
- Driesel, A.J., Crouse, E.J., Gordon, K., Bohnert, H.J., Herrmann, R.G., Steinmetz, A., Mubumbila, M., Keller, M., Burkard, G. and Weil, J.H. (1979) Gene 6, 285-306.
- 5. Ramiasa, J., Guillemaut, P. and Weil, J.H. (1977) FEBS Lett. 75, 128-132.
- Chang, S.H., Brum, C.K., Silberklang, M., RajBhandary, U.L., Hecker, L.I. and Barnett, W.E. (1976) Cell 9, 717-724.
- 7. Guillemaut, P. and Keith, G. (1977) FEBS Lett. 84, 351-356.
- 8. Burkard, G., Guillemaut, P. and Weil, J.H. (1970) Biochim. Biophys. Acta 224, 184-190.
- 9. Holmes, W.M., Hurd, R.E., Reid, B.R., Rimerman, R.A. and Hatfield, G.W. (1975) Proc. Natl. Acad. Sci. USA 72, 1068-1071.
- 10. Kelmers, A.D. and Heatherly, D.E. (1971) Analyt. Biochem. 44, 486-495.
- 11. Rogg, H., Brambilla, R., Keith, G. and Staehelin, M. (1976) Nucl. Acids Res. 3, 285-295.
- 12. Brown, R.S., Rubin, J.R., Rhodes, D., Guilley, H., Simoncsits, A. and Brownlee, G.G. (1978) Nucl. Acids Res. 5, 23-36.
- Donis-Keller, H., Maxam, A.M. and Gilbert, W. (1977) Nucl. Acids Res. 4, 2527-2538.
- 14. Simoncsits, A., Brownlee, G.G., Brown, R.S., Rubin, J.R. and Guilley, H. (1977) Nature 269, 833-836.
- 15. Silberklang, M., Gillum, A.M. and RajBhandary, U.L. (1977) Nucl. Acids Res. 4, 4091-4108.
- 16. Sanger, F. and Coulson, A.R. (1978) FEBS Lett. 87, 107-110.
- 17. Gillum, A.M., Urquhart, N., Smith, M. and RajBhandary, U.L. (1975) Cell 6, 395-405.
- 18. Silberklang, M., Prochiantz, A., Haenni, A.L. and RajBhandary, U.L. (1977) Eur. J. Biochem. 72, 465-478.
- 19. Stanley, J. and Vassilenko, S. (1978) Nature 274, 87-89.
- 20. Keith, G. and Dirheimer, G. (1978) Biochim. Biophys. Acta 517, 133-149.
- 21. Fournier, M., Labouesse, J., Dirheimer, G., Fix, C. and Keith, G. (1978) Biochim. Biophys. Acta 521, 198-208.
- 22. Gauss, D.H., Grüter, F. and Sprinzl, M. (1979) Nucl. Acids Res. 6, r1-r19.
- 23. Crick, F.H.C. (1966) J. Mol. Biol. 9, 548-555.
- 24. Blank, H.U. and Söll, D. (1971) Biochem. Biophys. Res. Commun. 43, 1192-1197.
- 25. Weissenbach, J., Dirheimer, G., Falcoff, R., Sanceau, J. and Falcoff, E. (1977) FEBS Lett. 82, 71-76.
- 26. McCloskey, J.A. and Nishimura, S. (1977) Accounts Chem. Res. 10, 403-410.
- 27. Einset, J.W., Swaminathan, S. and Skoog, F. (1976) Plant Physiol. 58, 140-142
- 28. Struxness, L.A., Armstrong, D.J., Gillam, I., Tener, M., Burrows, W.J. and Skoog, F. (1979) Plant Physiol. 63, 35-41.
- 29. Lester, B.R., Morris, R.O. and Cherry, J.H. (1979) Plant Physiol. <u>63</u>, 87-92.